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Abstract—The goal is a fault-tolerant, self-aware, low-
power, multi-core computer for space missions with 
thousands of simple cores, achieving speed through 
concurrency.  A second goal is that the system is not 
difficult to program.  The proposed machine decides how to 
achieve concurrency, in real-time, rather than programmers 
who now spend considerable effort carefully orchestrating 
every data item’s location and movement.  Closely related, 
fault-tolerant and power-aware re-organizing behavior is 
automatic. The driving features of the system are: simple 
hardware that is modular in the extreme, with no shared 
memory, and software with significant run-time re-
organizing capability.1 2 
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1. INTRODUCTION 
The era of multiprocessor/multi-core computing is here. 
Intel[2], IBM[4], Tilera[7], and others have built chips with 
dozens of cores. While some are viewed as serious 
contenders for spacecraft application, this paper suggests 
that simpler is even better.  Spacecraft are a special 
application, and this paper describes a multi-core system 
catering to spacecraft needs.   In particular, fault tolerant, 
real-time operation, and power management, are two areas 
that multi-core can address directly.  Key to both fault-
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tolerance and power management is moving programs and 
data without interrupting the system. 

2. SYSTEM OVERVIEW 
Associated with each core is the core’s memory. A core and 
its memory are called a processor, and there are a few 
hundred processors per chip (please see Figure 1 below, 
though the figure shows only a few processors per chip).  
There is no shared memory.  Instead, a processor connects 
to its neighbors through a high-speed data link.  Messages 
are sent to a neighbor switch, which in turn forwards that 
message on to its neighbor until reaching the intended 
destination.  Except for the neighbor connections, 
processors are isolated and independent of each other. 

 
Figure 1 – Hundreds of interconnected processors with 

no shared memory 

Some of the processors at the periphery of each chip are a 
little different than the inner processors, as they are able to 
drive off-chip to external devices or memory processors.  
The processors on the periphery also connect chip-to-chip, 
thus building up a large processor net.  There is no 
particular topology to the larger net, as a function at each 
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processor allows it to forward a message in the correct 
direction.  Some chip-to-chip connections are not 
necessarily nearest neighbor, providing short cuts for some 
of the longer physical distances.  The peripheral processors 
also provide the connections to sensors, actuators, radios, 
science instruments, and all the other devices with which 
the computer system interacts. 

A requirement on this system is very low power.  The 
design sacrifices speed per processor, but gains silicon to 
include more processors per chip, faster interconnect, and 
yield.  Rejection of shared memory is both a programming 
and a hardware design point.  Previous studies have shown 
the power cost of global memory and caches to be high[17]. 
Non-shared memory will increase communication needs, 
but instead of investing silicon and power in a global 
memory system, we build a faster interconnect, where speed 
increases can be used by all computations, not just those 
that access global memory.  Chip stacking is especially easy 
because each processor is independent; all wires on a given 
chip are within a single processor, or part of a neighbor-to-
neighbor connection.   This point of view shares much with 
the motivation of the Execube [4] system, though the goals 
here are different.  The emphasis here is on fault-tolerance 
and the ability to move computations in real-time from one 
part of the machine to another.  Ongoing computations may 
move due to 
 
(1) Processor failure 

(2) Locality considerations that make it more efficient to 
perform the computation in a different part of the 
machine 

(3) Some portion of the machine is to be powered off to 
reduce power use 

(4) Some part of the system has been physically damaged. 

This movement of data and functions from one area to 
another is fundamental.  It requires that the machine and its 
computations are self-aware, and that it consider where the 
work is done, at what rate, and how much power to expend. 
 Closely related to moving computations is creating copies 
of computations, which is at the core of some forms of 
computational redundancy: repeating an instance of a given 
computation, as in TMR (Triple-Modular Redundancy), 
temporal redundancy, or check-pointing, where either an 
exact copy or a different version of the same computation is 
used. 

3. THE MODEL OF EXECUTION  
Execution is based on a functional paradigm rather than von 
Neumann.  In the von Neumann model  
 

(1) The instructions manipulate the contents of storage 
locations in a memory. 

(2) The machine executes instructions sequentially, that is, 
the operation executes when the program counter 
reaches it. 

The functional model is based upon 
 
(1) A function executes as soon as the necessary data 

arrive. 

(2) Variables are mathematical variables – they have a 
value – they are not memory cells; for example, no 
variable’s value is computed more than once. 

The term dataflow [8, 9] has also been used to describe the 
functional model, as it pictures input data values flowing 
through the functions that produce new output data values.  
The functional model of execution is analogous to 
asynchronous digital circuit operation, while the von 
Neumann model is similar to clocked circuits. 

4. CONCURRENCY IN FUNCTIONAL PROGRAMS  
Since some readers will be unfamiliar with the advantages 
of functional programs in multi-core platforms, we discuss 
this point here.  We show some example programs that 
progress from a non-functional program to pure functions, 
and we discuss the compiled version of each and how the 
proposed machine can execute the resulting code. 

In functional programs, any two expressions may execute 
concurrently, and any two functions not dependent on one 
another may also run in parallel, where a function f is 
dependent on function g if and only if an input argument of 
f is (directly or indirectly) an output result of g.  Functional 
programs thus exhibit implicit concurrency.  There is no 
need for explicit message passing or other concurrency-
control statements in the program.  Although functional 
programs can be written in non-functional languages, 
functional languages such as Haskell [11], and especially 
Fortress [6], even cater to multi-core implementations, for 
example, by internally using the parallelism inherent in trees 
rather than linear lists (see below). 

Writing functional code to achieve concurrency is in 
contrast to other approaches.  Investigators have looked for 
many years at how to make sequential programs run in 
parallel [16].  There are many reasons for doing so: the 
large number of expensive sequential programs already 
debugged and running; or, the view that the task of 
programming concurrent systems is too hard for people to 
do, so let a few experts work it out while the rest of us write 
the code sequentially and they’ll just “make it work”.  The 
more popular programming paradigms for concurrent 
machines such as MPI [12] can be hard to program. 
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Annotating code to make it possible for automatically 
converting sequential code to parallel machines is also 
difficult [13].  Such systems are low-level, and require the 
programmer do as much work in programming the 
concurrency as he does in programming the rest of the job. 
The result is carefully optimized code that is sometimes 
quite fast, but can be brittle to changes in available 
processors or faults requiring re-arrangement of data and 
code. 

In our view, we should simply be writing the code that 
produces the answer, and let the machine do the arranging.  
Functional code is one way to do that.  Such programs run 
just fine on sequential machines, and when you have 
available a multi-core machine, it will run even better. 

Example A: Program r below is not a function. 

extern int sum; 
int r(int a, int b, int->int f) { 
 sum = 0; 
 for (int i=0; i<b; i++) 
  sum += f(i); 
 return sum; } 

Program r is not a function because the variable sum is 
computed (assigned) more than once, and the value of r() 
can depend upon hidden interactions with other programs 
(even f) via variable sum.  This makes it difficult for a 
person or an analyzer to decide if any given call to r() can 
run concurrently with any other program in the system.  But 
people do write such programs, and programmers can 
sometimes annotate or mark a program to help an analyzer 
find opportunities for parallelism [13].  My position is that 
it is better just to write the program so that, as much as 
possible, it behaves in a functional manner in the first place. 

Example B: Program m below behaves externally as a 
function, but internally uses a non-functional element (the 
memory cell "sum") and must work if f is not a function. 

int m(int a, int b, int->int f) { 
 int sum = 0; 
 for (int i=a; i<b; i++) 

sum += f(i); 
 return sum; } 

A graph of program m appears in Figure 2. 

 
Figure 2 – A graph of program m 

If we do m(0,100), program m sums all the f(i) where i 
ranges from 0 through 99 by re-writing the variable sum. 
Because f may not be a function, the program 
sequentializes: the value of each i is computed, then f(i), 
then the partial sum, and finally we can go on to the next 
iteration.  Since we don’t know what f does, the f(i) must 
execute in this order. 

Example C: In a functional system, everything is a function 
unless declared to be otherwise.  Thus f is a function, and 
we re-write m below as a function. 

function m(a,b,f) = { s = sequence(a,b); 
    x = map(f,s); 
    return accumulate(x); } 

Because f is a function, all executions of f are independent.  
If we run m(0,100), the first statement produces the 
sequence s = 0,1, …, 99; the second statement uses a 
function called map that decomposes into two functions 
mapper and unmapper, where mapper applies f to each 
value in s, and unmapper gathers the results together to 
create the new sequence x = f(0), f(1), …, f(99); the third 
statement sums all the values in x.  A graph of the above 
functional program appears in Figure 3 below. 

Note that “map” generates the parallelism, and the 
sequentiality around the variable “sum” is not present.  The 
functions sequence, map, f, and accumulate are truly 
functions: no variable is computed more than once (no 
variable’s value is updated), and each function simply 
produces a result. 
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Figure 3 – A graph of the functional program m 

An important optimization occurs when we further 
decompose the above graph into the graph in Figure 4 
where, instead of running each call to f(i) on a different 
processor, the machine groups k function calls on the same 
processor, with increasing k for smaller f functions.  The 
graph is a little different than one might expect because the 
sequence function produces the integers using a tree, and 
the accumulate function sums using a tree.  Such an 
accumulate function assumes that the sequence over + is 
associative, meaning that the terms can be grouped 
arbitrarily, though the order of the terms in the sum must 
remain the same [5].  If your circumstance does not allow 
you to say + is associative (for example, overflow may 
occur if sums are not properly grouped), then you cannot 
use this version of accumulate.  Instead, some other version 
of accumulate would be appropriate. 

 
Figure 4 – Further decomposing the graph of Figure 3 

A word about granularity: there is no one appropriate level. 
 For some problems, maximum performance is achieved 
when even simple arithmetic operations such as +, -, *, / are 
spread over the machine.  For other problems, it is at a 
much higher level.  It also depends upon the meaning of 
“performance”: speed, memory usage, power consumption, 
and so on.  For this reason, we define concurrent execution 
to occur at a function call.  Any given function call may be 
sent to run concurrently elsewhere.  The decision as to 
whether the given call is treated as a point of concurrency or 
not is made at run-time, even at the time of the call. 
Reference [15] reviews a number of algorithms and 
scheduling methods applicable to this machine. 

In the above paragraphs, we progressed from a non-
functional to a purely functional program, and showed how 
the resulting code is executes, and adapts, to the current 
processor situation. 

5. THE APPLY TREE  
In this section we will get into the details of how the 
machine creates concurrent threads at function calls and 
how it adapts to varying numbers of processors. 

Everything begins with a function call f(x)3  which, inside 
the machine, is the fundamental box called apply, where 
apply(f, x) = f(x).  Apply’s job is to receive the value f (a 
function) and the data value x, and cause a processor to 
execute f(x).  We augment apply with another input P which 
is the specific set of processors available to that apply for 
running f(x), represented in Figure 5 below. 

Now f may have several function calls inside it, such as 
shown below in Figure 6.  Note that each of those function 
calls is an apply and thus has a processor resource input.  
There are resource allocation functions within f that 
distribute the processor resources however f desires.  A 
compiler can produce default distribution strategies and 
associate them with each function f it compiles, but the user 
can also supply custom methods. 

 
Figure 5 – The definition of function application 

 
3    To simplify notation, we often show functions as having only of one 
argument, though we could have written x1, …, xn instead. 
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Figure 6 – Function f calls other functions, and sub-

allocates the processors. 

Finally, should apply decide to run f(x) on another 
processor, then it sends f and x to a remote apply which we 
illustrate in Figure 7 below. 

 
Figure 7 – An apply running f remotely 

When apply in processor p spawns a remote apply in 
processor q, the return address sent to q is (p, local-apply-
address).  The remote apply in q then sends its result back to 
local-apply-address in p.  Any apply can run on any 
processor. 

The usual execution of nested applies on a single-processor 
sequential machine uses a stack.  But with concurrency we 
have not just a stack of applies but a tree of applies, all of 
which can be running at the same time.  A simple, bi-
directional or doubly-linked apply tree is shown in Figure 8 
as it would appear for function f from the example above, 
were function h to make two additional function calls that 
run concurrently. 

 
Figure 8 – A portion of an apply tree of function f 

You should picture values in the tree flowing down as 
arguments, and back up the tree as results.  The tree is 

constantly adding and deleting nodes at the fringe as 
functions call and return.  However, each node is actually a 
thread context rather than a function call frame on a stack, 
as information (for example, processor assignments) can 
flow in both directions during the lifetime of any given 
node.  In particular, the P input to each apply (node in the 
apply tree) is still available and can receive further 
information regarding processor resources.  For example, an 
overseer function may decide that it wants processor q 
returned, that is, removed from the pool currently in use.  
The overseer could begin at any node of the apply tree and 
tell it to return processor q.  In turn, that apply node sends 
notices to its child nodes, telling them to return processor q. 
 Since nodes are constantly being created and destroyed, 
eventually all the nodes using processor q will complete, 
and the parent will simply no longer assign any of its 
children to use processor q.  However, since some tree 
nodes may persist for extended periods of time, such a 
passive response to the original request to return processor q 
may not be satisfactory.  In this case, the nodes using 
processor q need to be moved, and then q can be returned to 
the overseer. 

In this section, we covered in some detail how the machine 
creates concurrent threads and adapts to varying numbers of 
processors.  Moving computations is discussed in the next 
section. 

6. MOVING FUNCTIONS AND DATA IN REAL-TIME  
Consider the Extended Example function m above.  Within 
m, let’s start the execution of f(17) and then stop the 
processor part way through (say the machine detected an 
error) and move the computation of f(17) elsewhere.  Can 
we simply re-run f(17)?  Yes; because f is a function, its 
only effect is to produce a value – there are no side-effects 
or actions that modify any variable.  Furthermore, restarts 
require no special work on the part of the programmer.  As 
long as f is truly a function and its inputs are still available, 
its execution can be replicated, moved, or re-run, and the 
same result is always returned (or there is an error). 

The phrase “moving functions” refers to moving the 
execution of a function as well as the code itself.  Recall 
that the apply tree is doubly-linked, with both physical and 
logical pointers.  There are actually several methods for 
moving a node; we describe one of them here: To organize 
the movement of nodes, we create a “tree mover” agent, 
whose job is to decide which nodes to move from one 
processor to another, and to start the moves.  The mover 
starts at one node, moves it, and then moves each of its 
child nodes, as needed. A node is moved or not moved 
depending on the purpose of the move, but the mover can 
propagate as far as needed, and then stop.  Because each 
node is actually thread, the move is done by the thread: the 
thread notes the fact that it is moving, copies itself to its 
new destination, re-directs the sources of any messages it 
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expects to receive (and, in the interim, forwards to the 
destination any inputs that it does receive) waits to hear 
from those re-directs and from the destination that all is 
ready, and then destroys itself. 

Another type of move causes all nodes from a given 
program residing on processor P to move to processor Q. 
Such a mover does not crawl a tree, but rather finds all 
nodes on P, moves each node to Q, and then quits. 

The reader may be of the opinion that there is significant 
overhead present just in case some function execution is to 
be moved.  There is definitely more work that is done for a 
given function call, but we submit that the absence of the 
ability to move functions and data leaves the system brittle 
and with fewer options for power management and recovery 
from faults.  If we are to achieve truly robust computing, 
where parts of a distributed machine simply disappear, but 
the necessary computations continue on, then such overhead 
is not really overhead – it is essential. 

7. FAULT DETECTION, ISOLATION, AND 
RECOVERY 

In this section we will visit the problem of faults. Please 
note that our purpose is not to suggest that some particular 
fault protection and recovery scheme is appropriate for any 
specific circumstance, only that some schemes are very easy 
to implement in the proposed system. 

Because there are no side-effects, strategies like TMR 
(Triple Modular Redundancy) and check-pointing can be 
done with virtually no work on the part of the programmer.  
For example, if there is a function call f(x) in the program, 
and the function is to be protected by TMR, then writing 
TMR(f,x) instead of f(x) executes f(x) in three different 
processors, and votes the result.  Pseudo-code for a simple 
TMR function is: 

TMR(f,x) = { 
 y1 = apply(f,x); 
 y2 = apply(f,x); 
 y3 = apply(f,x); 
 return y1 if (y1 == y2 && y2 == y3) else 
  y2 if (y1 == y2) else 
  y3 if (y2 == y3) else 
  y1 if (y1 == y3) else failed; } 

The programmer (and the system) need know nothing more 
about f than that it is a function, and the TMR will do its 
job. 

The above shows a simple voter in the TMR.  But in a real-
time system, more difficult situations can arise.  For 
example, if one of the results is not returned, but the other 
two agree, then the TMR can reply with the value agreed so 
far so as not to make the computation late.  But the point is 

that with functions, the job of replicating function execution 
is simple, and one can see how the system itself could 
decide to apply TMR to function calls on its own to give a 
desired level of protection.  Any function in any place in the 
program can be run using TMR without the participation of 
the programmer. This is not possible in traditional, 
sequential programs. 

Both check-pointing and temporal redundancy are also 
options, again with little programmer effort.  An apply(f,x) 
can save f and x before spawning.  If for some reason it 
becomes necessary to re-run f(x), the saved f and x are all 
that is necessary, and can be re-run at any time. 

In this section, we discussed how specific fault detection 
and recovery schemes may be implemented.  Again, this is 
not to imply that more sophisticated schemes might be 
necessary.  But we do claim that the schemes discussed here 
are much simpler to implement and use in a functional 
system than in a non-functional one. 

8. NON-FUNCTIONAL PROGRAMS  
It is not difficult to write most programs in a functional 
style, and as long as significant portions of an application 
are functions, you will get the benefits when run on the 
proposed machine.  A detailed example appears in [14], but 
here we briefly address the issue of functional programs and 
state, such as resources and resource allocators.  For 
example, consider an allocator that receives requests from a 
user to acquire and release chunks of some resource R.  The 
calls allocate(R, q) and de-allocate(R, q) are requests to R to 
allocate, and to return, q instances of R, respectively.  
Please see Figure 9 below. 

The allocator simply loops on the current state of resource R 
and waits for a request (allocate or de-allocate) in the input 
stream Q.  If the request is to acquire q units of R, the 
allocator decides if it has enough, returns either q or zero 
units of R to the caller, and correspondingly updates the 
state of R (stream “num” in Figure 9).  The state update is at 
the end of the loop, after which the allocator waits for the 
next request.  A request to return q units of R is always 
accepted and results in an increase in the next value in 
stream “num”.  The initial value of the loop variable is the 
number of units of resource that R can allocate. 

Curiously, R above is a function if we consider R to be 
function over a stream of inputs, rather than a function on 
each item in the stream.  That is, given the same input 
stream Q (the sequence of allocate and de-allocate requests) 
the allocator R always produces the same output stream – it 
does not re-write any values.  So function R can be written 
in a functional language, even though the callers of R see it 
not to be a function.  And since any call by a program g to a 
resource allocator is a non-functional action, the caller g 
becomes non-functional.  Nevertheless, the vast majority of 
programs remain functional and can be executed as such on 
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the proposed system.  But we must make provision for non-
functional code (resource allocators or otherwise) and 
isolate appropriately the non-functional parts. 

 
Figure 9 – An allocator as a functional program with a 

stream Q of user allocation requests 

An example of such isolation is using non-functional code 
with TMR.  Assume we have a function f, except that at one 
point in f there is a single call to resource allocation 
program h. TMR(f,x) will cause h to be called three times 
instead of once, and each call to h within TMR(f,x) may 
produce different results.  The solution is that TMR must 
know that h is not a function, and thus TMR must “unTMR” 
before the calls to h.  unTMR requires that the 
corresponding calls of h in each of the three f’s all be 
replaced by a single call to h(w).  The unTMR(h,w) votes 
the three instances of argument w, then makes one call to 
h(w) and returns the same result to each of the f’s in 
TMR(f,x). 

Pseudo-code for unTMR is 

unTMR(g, z1, z2, z3) = { 
 z = z1 if (z1 == z2 == z3) else 
  z2 if (z1 == z2) else 
  z3 if (z2 == z3) else 
  z1 if (z1 == z3) else 
  failed; 
 return  failed if (z == failed) else g(z); } 

UnTMR is an example of how non-functional code can be 
mixed with functional code, and still allow the system to 
deliver advantages for the functional part.  However, note 
that non-functional code is trouble.  It can be 
accommodated, but it makes the resulting system less 
flexible, and prevents the system from delivering its full 
capability.  So the goal is to isolate and reduce non-
functional code to a minimum. 

9. POWER-AWARE COMPUTING  
Adjusting power needs to the current compute load has been 
a part of commercial computing for some time [1], so it is 
not entirely new to multi-core.  But it has come to the fore 

in space-borne applications both because multi-core can 
draw considerable power, and because it provides another 
knob to adjust power consumption to fit the situation.  And 
regardless of how little power one chip may draw, 
combining hundreds of chips together can make the 
situation acute [3]. It is always a good idea to use as little 
power as you need, possibly with some hot spares ready to 
go to work in case of a problem. 

In the system proposed here, each function f (both user 
functions and library functions) has an associated “load” 
function load(f) = (a,b) that returns to the caller a measure 
of the “load units” that function f will present to the system, 
where a is the load presented by f(x) on a single processor, 
that is, the total amount of work to be done, and b is the 
number of processors f could usefully use, or, the degree of 
parallelism f exhibits.  For example, the load function 
associated with map(f,s) is load(map, (f, s)) = (load(f,1), 
length(s)).  A compiler could produce simple load functions 
automatically, but handcrafted load functions can replace 
compiler-generated functions.  So when apply(f,x) is about 
to run f(x) on some processor, apply first runs load(f,x) and 
uses the result to decide whether to ask the system resource 
manager for more processors, possibly requesting the 
processors for f’s exclusive use.  When asked, the resource 
manager considers the availability and then returns to apply 
any additional processors to use. When apply is done, it 
returns back to the resource manager any processors it 
received so they can be used elsewhere. 

Because it is a functional language, many instances of apply 
occur in quick succession.  So should the resource allocator 
decide to take back resources, the system will respond to the 
change in a timely way.  When processors are to be 
removed, apply should engage the node mover to move 
ongoing computations away from the processors being de-
allocated. 

10. SUMMARY AND FUTURE WORK 
This paper presents a multi-core hardware and software 
system emphasizing power-aware, fault-tolerant, and real-
time operation.  It describes a mechanism for moving on-
going computations and data, a capability central to 
achieving power-aware and fault-tolerant computing.  It is 
based on a functional model of execution (as opposed to the 
von Neumann model) – a basis that makes simple the 
behaviors described here.  The hardware is simple, as there 
is no shared memory.  This alone frees up considerable 
silicon resources for other purposes. 

Several items are still unfinished, for example, moving a 
computation is not yet fault tolerant. But after completing 
these, the next step in the design is to model the system, 
especially power and fault models, and simulate and 
evaluate the performance, under normal operating 
conditions, fault situations, and power allocations. 
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